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Analysis of Single and Coupled Microstrip Lines on
Anisotropic Substrates Using Differential Matrix
Operators and the Spectral-Domain Method

Yinchao Chen and Benjamin Beker, Member, IEEE

Abstract—In this paper, a differential matrix operator tech-
nique is presented to simplify the formulation of boundary-value
problems for open millimeter-wave integrated circuits (MIC’s)
which use anisotropic substrates. The spectral-domain method is
applied to analyze the propagation characteristics of single and
coupled microstrip lines printed on anisotropic substrates whose
properties are described by both [¢] and [u] tensors. In addition
to considering the permittivity and permeability as a uniaxial or
biaxial tensor, the effects of coordinate misalignment between the
principal axes of [c] and those of the structure in the transverse
plane are also included. It is shown that the misalignment in [<]
and the presence of the [x] tensor has a significant effect on the
dispersive properties of these two structures.

I. INTRODUCTION

N RECENT years, the use of anisotropic materials as mi-

crowave and millimeter-wave substrates has become pop-
ular, [13-[4] primarily due to their advantages over isotropic
substrates in the development of a variety of devices, including
directional couplers and microstrip antennas. In addition, from
practical standpoint, this topic is also important because even
isotropic MIC substrates may exhibit anisotropic properties at
higher millimeter-wave frequencies. However, until now, most
of the emphasis was primarily given to substrate materials
characterized by permittivity tensor only, and mathematical
tools for their analysis were mostly limited to classical vector
methods which are extremely lengthy and complicated.

To simplify the formulation of boundary-value problems
involving plane wave propagation in, and reflection from,
stratified anisotropic media at optical frequencies, Berreman
[5] presented a 4 x 4 matrix formulation. This approach treats
every vector quantity as well as all vector differential operators
as matrices, and allows for manipulating Maxwell’s equations
using matrix algebra. Berreman’s technique uses the so-called
four-component approach (i.e., two components of the E- and
two components of H-field) which reduces the vector forms of
Maxwell’s equations in a planar region to the solution of first
order differential equations. For microwave and millimeter-
wave integrated circuits, the 4 X 4 matrix method was adapted
for use in the spectral-domain as well [6]. The Green’s
function was derived using the Fourier-transformed matrix
method for a line source at an interface of a grounded multi-
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layered anisotropic substrate for both open and closed planar
regions. However, no numerical results for open structures
were provided.

In this paper, a general differential matrix operator tech-
nique is presented to formulate problems for open single and
coupled microstrip transmission lines printed on anisotropic
substrates which may be characterized by tensor permittivity
and permeability at the same time. The formulation of the
open MIC problem on anisotropic substrates, conceptually,
is similar to that commonly employed for their isotropic
counterparts. By defining every vector operator in a matrix
form, the differential matrix method can treat any vector
differential problem directly, such as Maxwell’s equations
and wave equations without any difficulty. Another valuable
feature of this method is its simplicity, which basically means
that every vector differential operation is reduced to matrix
multiplication, with matrix sizes not exceeding 3 X 3. As
a result, the procedure leading to the governing differential
equations involves matrix algebra only, rather than repeated
elimination of nonessential field components. This approach
is especially well-suited for problems involving anisotropic
media, and is even more effective for multi-layered structures.-
It permits simplified mathematical manipulations of Maxwell’s
equations, allowing for a quick derivation of differential equa-
tions for all components of E- or H-fields, even for substrate
materials that are characterized by a full [¢] or [] tensor.

Following the conversion of Maxwell’s equations to the
matrix operator form, the spectral-domain approach [7] is
applied to find the dispersion properties of single and cou-
pled microstrip lines printed on anisotropic substrates. The
planar region occupied by the substrate material exhibits both
dielectric and magnetic anisotropy, within which Maxwell’s
equations reduce to a pair of fourth order differential equations
for the components of the electric field that are tangential to
the air-metal-substrate interface; namely E, and E, (see Fig.
1). The remaining nonvanishing components of E- and H-field
are expressed in terms of E, and E,, and are used to derive the
dyadic spectral-domain Green'’s function for the structure. The
dispersion characteristics or the effective dielectric constant
(eeyy) are calculated by applying the Galerkin method to a
set of matrix equations relating currents on the metal strips to
fields at the interface.

Numerical results obtained by this method show a good
agreement with data found in references [8]-[10], thus provid-
ing the validation for the theory. Several additional numerical
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TABLE 1
COMMON VECTOR DIFFERENTIAL OPERATORS AND THEIR MATRIX FORMS

Conventional Vector Operator Matrix Operator
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Fig. 1. Geometry of open microstrip transmission lines: (a) single, (b)

coupled.

case-studies are performed to show that the misalignment be-
tween the coordinate system of the permittivity tensor with that
of the guiding structure has a measurable degree of influence
on the propagation properties of the transmission line. Finally,
effects on the effective index of refraction (n.s5)% = (8/k,)?
due to the presence of anisotropic characteristics in the [p]
tensor are examined as well.

II. DIFFERENTIAL MATRIX OPERATORS

Manipulation of Maxwell’s equations primarily involves
three vector differential operators; namely, the gradient, di-
vergence, and curl. In order to aid the formulation of the mi-
crostrip (or planar region) boundary-value problem, Maxwell’s
equations are Fourier transformed to the spectral-domain using
the following integral:

d(a,y,B) = / - ®(z,y)et@e=02) gy 4

hate o}

where ® can be any component of the electric or mag-
netic field. Using the above defined transform intergal, the
differential vector operators can be transformed to the spectral-
domain well. Table I gives a compact summary of common
vector operators which appear in Maxwell’s equations, along
with their equivalent differential matrix forms. In this table,
quantities ¢ and F' are scalar and vector functions of position
along the direction perpendicular to the inhomogeneity (see
Fig. 1).

If the substrate material is characterized by the following
forms of the permittivity and permeability tensors

[ era Eey O

colel =eo| ey gy O (2a)
| O 0 e,
[ e 00

polpl = po| 0 pyy O |, (2b)
| 0 0 pe

then with the help of matrix operators defined above,
Maxwell’s equations in the spectral-domain can be rewritten as

0 +iB djdy] [ E.
—3B 0 Jja E,

—d/dy —jo 0 E,
pow O 0 ][H.
=—jJwpo| 0  pyy O ];{y 3
0 0 p.)|H
0 +iB d/dy] [Ha.
-6 0 Jja Igy
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= Jweo | Eye Eyy 0O lgy . )

0 0 &, E,

The two corresponding vector wave equations in a planar
anisotropic medium, characterized by [] and [u] of (2), can
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be readily shown to have the following forms:

{[Vx][u] ™ [Vx] - k[ E] = (52)
{IVx]e] ™ [Vx] = K2 [ul }H] = [0], (5b)
where [E] = [E,, E,, E.|" and [H] = [H,, H,, H,]T. Either

one of the matrix wave equations (5a) or (5b) can now
be reduced to the three coupled, second order differential
equations for the components of £ or H. By comparison,
the series of matrix operations needed to solve relations (5)
are simpler than corresponding conventional vector operations
which are required to achieve the same goal.

III. THE DYADIC GREEN’s FUNCTION

Both single and coupled microstrip lines, which are shown
in Fig. 1, consist of a thin anisotropic layer characterized by
[e] and [p] tensors simultaneously. The grounded anisotropic
substrate of thickness D), is assumed to be lossless and is
infinite in the = and z directions, having infinitesimally thin
and perfectly conducting metal strips printed on its top. The
dielectric permittivity tensor is diagonal in the coordinate
system of its principal axes (z’,y/,2") with (egy.€¢¢,6¢¢)
being the corresponding tensor elements, If the coordinates
of the guiding structure (x,v, ) are misaligned with those of
the material, then [¢] will have all of its elements given by
the ensuing relations

E€aw = Eny COS2 O + £¢¢ sin® 6 (6a)
€4y = Eny Sin® 0 + g cos? 0 (6b)
Ezy = (Epy — €g¢)sind cos b (6¢)
Eys = Exy (6d)
€2z = E¢¢ (6e)

where 8 is the misalignment angle also shown in Fig. 1. On the
other hand, the permeability tensor of the substrate is assumed
to be diagonal throughout the remainder of this paper.

Next, (5a) is used to obtain two second order, coupled
differential equations for the tangential (to the air-substrate in-
terface) components of electric field which after simplification
will have the following form:

d2E, dE, . d2E,
I e == E

G0~ +jay a0 + a2 ac:l'bO i
. dE, .

+Jbld— +bE, =0 (7a)
d2E dE, d2E,
T . E ~
co——dy2 +j0— &y +coby +do—— i
. dE N

+ jdi Tyz +doE, =0, (7b)

where constants ag through dy are real functions of the
medium parameters, transform variable «, propagation con-
stant 3, and k,, whose explicit forms are given in the Ap-
pendix.
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_ Finally, by performing successive substitutions to eliminate
E, from (7a), it is possiblq to obtain a decoupled, fourth order
differential equation for F,

d4E BE,
d 4 dy3

4B: B, =0, ®
dy

2E,
dy?

+Jjw1 + w2 +Jjws
where the coefficients wy to w4 are related to constants ag to
do, as shown in the Appendix. A decoupled equation for E,
can also be derived by following the same approach used to
arrive at relation (8), and as a result, this procedure will not
be repeated here.

Since the substrate is assumed to be lossless, the transverse
(spectral-domain) propagation parameter, -y, is either purely
real or imaginary, with values of « ranging from negative to
positive infinity. Consequently, the solution to the characteris-
tic equation (8) inside the substrate will lead to standing waves
which mathematically are expressed in terms of sinusoidal
functions. The remaining components of E and H can be
expressed in terms of E, and E, by using Maxwell’s curl
equations (3) and (4). Finally, when the boundary conditions
are enforced at the air-metal-substrate interface, i.e., at y = D,
the following dyadic Green’s function is obtained:

C )| R

where its elements are given in the Appendix as well.

In order to examine the dispersion properties of single as
well as coupled microstrip transmission lines numerically, an
appropriate choice for the basis functions used to expand the
currents J, and Jz, which are flowing on the metal strips, is
made to ensure that they satisfy the required edge conditions.
Then a standard Galerkin method in the Fourier-domain is
applied along with Parserval’s theorem [7] to obtain a system
of matrix equations. The determinant of this system leads to
a secular equation whose roots correspond to the propagation
constant [3.

] ®

IV. NUMERICAL RESULTS

In order to verify the formulation of the problem and its
numerical implementation, the effective dielectric constant
of both single and coupled microstriplines is calculated and
compared to previously published data [8]-[10]. The substrate
materials used for validation include sapphire (e,, = €., =
9.4 and £, = 11.6) and boron nitride (g,, = &,, = 5.12
and &, = 3.4), with the numerical data generated for several
different combinations of physical line dimensions. As can be
seen from Figs. 2 and 3, a very good agreement for frequencies
ranging from 5 to 45 GHz is observed between results obtained
using the method presented in this paper and those reproduced
from [8] and [10].

Prior to examining effects of misalignment between coor-
dinates of the substrate and those of the single microstripline
structure, the influence of the magnetic anisotropy (in addition
to the dielectric anisotropy of the substrate) on (ness)? i
shown in Fig. 4. The change in the effective index of refraction
for a material characterized by a diagonal [e] tensor with
Ezs = €2, = 9.4 and e, = 11.6, is presented as a function of
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Fig. 2. Frequency dependence of c.¢¢ for a single microstrip line on
sapphire or boron nitride: (—— this method, MEm data from [8];
this method, A A A data from [9]).
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Fig.3. &z  for even and odd modes as functions of the normalized substrate
thickness (D/X,) for a coupled microstrip line on sapphire: (—— thus
method, mmM data from [10]; - - - - - this method, A A A data from [10]).

individual elements of the permeability (ftgz, fhyy, f22) at 10
GHz. One element is allowed to vary at the time within the
range of 1 to 2. It is found that the dispersion characteristics
of a single microstrip are most sensitive to the variation of the
e (or the zz) element of [u]. Notice, however, that in this
case the change in (nsf)? is quite profound and has a nearly
linear dependence over the entire range of fig,.

The same parameter study was also carried out for the
coupled microstripline, but this time, with a 30 degree mis-
alignment between (z,y,2) and (z’,7,2') coordinates. As
shown in Fig. 5, a similar dispersion pattern for the effective
index of refraction, to that of a single microstrip, can be
observed again. Once more, (n.rs)? increases almost lineally
with incremental changes in .. Interestingly, this behavior
is seen for both the odd and even modes, with the exception
that the slopes of the dispersion curves are not the same for
the two cases.

Finally, the effects of coordinate misalignment for the two
structures are shown in Figs. 6 and 7. The effective index of
refraction and normalized guide wavelength are plotted versus
the misalignment angle 6 from 0 to 90 degrees (Fig. 6), whose

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 1, JANUARY 1993

..... (9.4,11.6,9.4; xx, 1.0, 1.0)
161 ____ (94,11.6,9.4;1.0,yy,1.0)
[ E— (94,11.6,9.4;1.0,1.0,zz)
gw
=y P -
129 -
g T -
- 10 et
=
W=D=1mm Frq=10GHz Q =0Deg

12 13 14 15 16 17 18 19

Element of Permeability (xx,yy, or zz)

2.0

Fig. 4. (ngs f)2 as a function of element of the permeabulity (frz, ftyy,
or p;) for a single microstrip line.
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Fig. 5. (ney f)2 for even and odd modes as a function of element of the
permeability (b z, fiyy, OF ft2z) for a coupled microstrip line.
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Fig. 6. (n.ss)? and normalized guide wavelength (A/),) as a function of

the misalignment angle for single microstrip line.

geometrical and medium parameters are shown in the figure.
Numerical results indicate that as 6 increases, (n.sf)? de-
creases, while normalized guide wavelength becomes slightly
larger. The same behavior can be observed for the coupled
line as well, for both its odd and even modes (see Fig. 7).
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Fig. 7. (nef f)2 for even and odd modes as a function of the misalignment
arigle for a coupled microstrip line.

V. CONCLUSION

A differential matrix operator approach in conjunction with
the spectral-domain method was presented to study dispersion
characteristics of open single and coupled microstrip transmis-
sion lines. It was found that converting Maxwell’s equations
in the Fourier-transformed domain to a matrix form simplified
their manipulation in order to obtain differential equations
for the tangential components of the electric field, especially
when the substrate is anisotropic. Effects of both dielectric
and magnetic anisotropies were examined by changing the
misalignment angle between the axes of [¢] and those of the
structure. The influence of the anisotropic permeability tensor,
in addition to the anisotropy in the permittivity, was observed
to be significant, particularly for changes in pg.

VI. APPENDIX

The coefficients of the coupled, second order differential

equations for £, and E, appearing in (7a) and (7b) are given
by

a0 = 3%/ bz — kieyy (A1)

a1 = ak?(egy + £4z) (A2)

a2 = Go(kZzztza — Btz /tyy) + KatizzCayeys (A3)

bo = —0B/pza (A4)

b = k) paz€ay/ oo (AS)

by = GoaBlizz/ thyy (A6)
co = —af/ s (AT)
1= Bkleys (A8)
ez = GoaPBliza/ thyy (A9)
do = 02/ pi. — kleyy (A10)
di =0 (A11)

dy = Go(kg;u/:cacszz - QQwa/Nyy)y (A12)

where G, = %/ pss + 0%/ 2z — K2y,

When the coupled equation set (7a) and (7b) is decoupled to
obtain an independent fourth order differential equation which
Ez satisfies, the new set of constants wg through w4 in (8)
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can be written as

wo = dyag — bycy (A13)
wy = bicy — dyag + bycy — dyay (A14)
wy = dyay — by + bicy — dia) (Al4)
ws = biey — dyag + byey — dhaq (A15)
wy = bhe) — dya) (A16)
with

ap = a1 — ag(ascy — c2a9)/D, (A1T)
al = ag (A18)

o = —ao(boco — doao)/ Do (A19)

i = bo + ag(b1co — d1ag)/ D, (A20)

5 = by — ag(baco — daag)/ Do (A21)

5 =by (A22)
¢y = c1 — co(agco — caa0)/ D, (A23)
¢) = ¢y (A24)
dy = —co(boco — doao)/ D, (A25)
d; = do + co(bico — diao)/ Do (A26)

/2 = dl - Co(b260 - dzao)/Do (A27)
d = ds, (A29)

and D, = ciag — a1¢o.
Finally, explicit expressions for the elements of the Green’s
function shown in equation (10) are listed below:

G.. = jBv1Uo/y1 + joVo (A30)
Gie = ULy + jaVi (A31)
Gy = janUs/y1 — jBVO (A32)
Gew = jonUi/yr — iB8V1 (A33)

where y; = jweo, 71 = (o? + 82 - k2)Y/2, and
Up = (BQ22 — aQ12)/Ag (A34)
Ui = (aQ2 + fQ12)/Aq (A35)
Vo = (aQ11 — Q21)/Ag (A36)
Vi = —(Q11 + aQ21)/Ag (A37)

with Ag = Q11Q22 — Q12@21, and

Q11 = BaaGi + BpaGs — j(a® + 67) (A38)
Q12 = BapG1 + BepG» (A39)
Q21 = BaaGs+ BpaGy (A40)

Q22 = BupGs + BppGa — jmi(a® + B%)/z1, (A41)

where z; = jwpug. The constants G through G4 are defined as

Gy =pHs —aHg + cto(BHp — aHp)  (A42)
Gy = BHe — aHg + cty(BHp — aHy)  (A43)
Gs=aHs+ BHg + ct,(aHg + SHr) (A44)
G4 =aHg + fHg + cty(aHp + BHy) (A45)
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using the following shorthand notation ct, = coth(D~,) and
cty = coth(Dy), with

Baa = jn1(BEy, — a)/[y1(Ey — Ea)] (A46)
Bap = j(aEy + 08)/(Ey — E,) (A4T)
Bpa = —jn(BEs — a)/[y1(Ee — E,)]  (A48)
Bpp = —j(al, + 8)/(Ey — E,). (A49)

The remaining constants appearing the above expressions are
given by

Eqp = _[bO'Yg,b + bz]/[aoﬁ,b + as] (AS50)
Ey = kleyoEa/Go (A51)
Ep = jva(abo/ ez + B/ pez) [ Go (A52)
Ec = k2ey Ey/Go (A53)
Ep = jvw(aFy/tizz + B/ bzz)/Go (A54)
Ha = —jBEA/(2102) (AS5)
Hp = —(jBEB + va)/ (21 482x) (A56)
Heo = —jBEc/(z14000) (A57)
Hp = —(jBEp + )/ (2140) (A58)
Hg = jaEa/(z1p2) (A59)
Hp = (jaE +vaEa)/(214t22) (A60)
Hg = jaEc/(z11z2) (A61)
Hy = (jaEp + wEb)/(21422)- (A62)
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