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Abstract—In this paper, a differential matrix operator tech-
nique is presented to simplify the formulation of boundary-value
problems for open millimeter-wave integrated circuits (MIC’S)

which use anisotropic substrates. The spectral-domain method is

applied to analyze the propagation characteristics of single and
coupled microstrip lines printed on anisotropic substrates whose
properties are described by both [E] and [~] tensors. In addition

to considering the permittivity and permeability as a uniaxial or
biaxial tensor, the effects of coordinate misalignment between the
principal axes of [z] and those of the structure in the transverse

plane are also included. It is shown that the misalignment in [s]

and the presence of the [w] tensor has a significant effect on the

dispersive properties of these two structures.

I. INTRODUCTION

I N RECENT years, the use of anisotropic materials as mi-

crowave and millimeter-wave substrates has become pop-

ular, [1 ]–[4] primarily due to their advantages over isotropic

substrates in the development of a variety of devices, including

directional couplers and microstrip antennas. In addition, from

practical standpoint, this topic is also important because even

isotropic MIC substrates may exhibit anisotropic properties at

higher millimeter-wave frequencies. However, until now, most

of the emphasis was primarily given to substrate materials

characterized by perrnittivity tensor only, and mathematical

tools for their analysis were mostly limited to classical vector

methods which are extremely lengthy and complicated.

To simplify the formulation of boundary-value problems

involving plane wave propagation in, and reflection from,

stratified anisotropic media at optical frequencies, Berreman

[5] presented a 4 x 4 matrix formulation. This approach treats

every vector quantity as well as all vector differential operators

as matrices, and allows for manipulating Maxwell’s equations

using matrix algebra. Berreman’s technique uses the so-called

four-component approach (i.e., two components of the E- and

two components of II-field) which reduces the vector forms of

Maxwell’s equations in a planar region to the solution of first

order differential equations. For microwave and millimeter-

wave integrated circuits, the 4 x 4 matrix method was adapted

for use in the spectm-domain as well [6]. The Green’s

function was derived using the Fourier-transformed matrix

method for a line source at an interface of a grounded multi-
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layered anisotropic substrate for both open and closed planar

regions. However, no numerical results for open structures

were provided.

In this paper, a general differential matrix operator tech-

nique is presented to formulate problems for open single and

coupled microstrip transmission lines printed on anisotropic

substrates which may be characterized by tensor permittivity

and permeability at the same time. The formulation of the

open MIC problem on anisotropic substrates, conceptually,

is similar to that commonly employed for their isotropic

counte~arts. By defining every vector operator in a matrix

form, the differential matrix method can treat any vector

differential problem directly, such as Maxwell’s equations

and wave equations without any difficulty. Another valuable

feature of this method is its simplicity, which basically means

that every vector differential operation is reduced to matrix

multiplication, with matrix sizes not exceeding 3 x 3. As

a result, the procedure leading to the governing differential

equations involves matrix algebra only, rather than repeated

elimination of nonessential field components. This approach

is especially well-suited for problems involving anisotropic

media, and is even more effective for multi-layered structures.

It permits simplified mathematical manipulations of Maxwell’s

equations, allowing for a quick derivation of differential equa-

tions for all components of E- or H-fields, even for substrate

materials that are characterized by a full [e] or [p] tensor.

Following the conversion of Maxwell’s equations to the

matrix operator form, the spectral-domain approach ~1] is
applied to find the dispersion properties of single and cou-

pled microstrip lines printed on anisotropic substrates. The

planar region occupied by the substrate material exhibits both

dielectric and magnetic anisotropy, within which Maxwell’s

equations reduce to a pair of fourth order differential equations

for the components of the electric field that are tangential to

the air-metal-substrate interface; namely ~x and Ez (see Fig.

1). The remaining nonvan~hing c~mponents of E- and II-field

are expressed in terms of E. and E=, and are used to derive the

dyadic spectral-domain Green’s function for the structure. The

dispersion characteristics or the effective dielectric constant

(E.~~) are calculated by applying the Galerkin method to a

set of matrix equations relating currents on the metal strips to

fields at the interface.

Numerical results obtained by this method show a good

agreement with data found in references [8]–[ 10], thus provid-

ing the validation for the theory. Several additional numerical
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TABLE I

COMMON VECTOR DIFFERENTIAL OPERATORSAND THEIR MATRIX FORMS

(a)

(b)

Fig. 1. Geometry of open microstnp transmission lines: (a) single, (b)

coupled.

case-studies are performed to show that the misalignment be-

tween the coordinate system of the permittivity tensor with that

of the guiding structure has a measurable degree of influence

where @ can be any component of the electric or mag-

netic field. Using the above defined transform intergal, the

differential vector operators can be transformed to the spectral-

domain well. Table I gives a compact summary of common

vector operators which appear in Maxwell’s equations, along

with their equivalent differential matrix forms. In this table,

quantities j5 and ~ are scalar and vector functions of position

along the direction perpendicular to the inhomogeneity (see

Fig. 1).

If the substrate material is characterized by the following

forms of the permittivity and permeability tensors

then with the help of matrix operators defined above,

Maxwell’s equations in the spectral-domain can be rewritten as

on the propagation properties of the transmission line. Finally,

effects on the effective index of refraction (neff)2 = (@/kO)2

due to the presence of anisotropic characteristics in the [~]

tensor are examined as well.

II. DIFFERENTIAL MATRIX OPERATORS

o

1[1
+.i,8 d/dy Ez

–.iP o j~ ~g
–d/dy –ja O E=

Manipulation of Maxwell’s equations primarily involves

=-,w.o~z ;, :=]~] (3)

three vector differential operators; namely, the gradient, di-

[

0

1[ 1

+j/3 d/dy Hz

vergence, and curl. In order to aid the formulation of the mi- –.7’15’ o j~ gv

crostrip (or planar region) boundary-value problem, Maxwell’s
–d/dy –ja O Hz

equations are Fourier transformed to the spectral-domain using

the following integral:

“w&OF: ‘~ ilk] “)
q% Y,P) = r @(z,Y)e

+~(Q-@~) dz, (I) The two corresponding vector wave equations in a planar
—cc anisotropic medium, characterized by [E] and [P] of (2), can
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be readily shown to have the following forms:

{[W[L4-1P4 - Wl}[zl = [q (5a)

{[GX][E]-’[5X] - k:[fl]}[~] = [0], (5b)

one of the matrix wave equations (5a) or (5b) can now

be reduced to the three coupled, second order differential

equations for the components of E or If. By comparison,

the series of matrix operations needed to solve relations (5)

are simpler than corresponding conventional vector operations

which are required to achieve the same goal.

III. THE DYADIC GREEN’S FUNCTION

Both single and coupled microstrip lines, which are shown

in Fig. 1, consist of a thin anisotropic layer characterized by

[e] and [p] tensors simultaneously. The grounded anisotropic

substrate of thickness D, is assumed to be lossless and is

infinite in the z and z directions, having infinitesimally thin

and perfectly conducting metal strips printed on its top. The

dielectric permittivity tensor is diagonal in the coordinate

system of its principal axes (d, y’, z’) with (S~q, CCC,CCC)

being the corresponding tensor elements, If the coordinates

of the guiding structure ($, y, .z) are misaligned with those of

the material, then [s] will have all of its elements given by

the ensuing relations

where 6’ is the misalignment angle also shown in Fig. 1. On the

other hand, the permeability tensor of the substrate is assumed

to be diagonal throughout the remainder of this paper.

Next, (5a) is used to obtain two second order, coupled

differential equations for the tangential (to the air-substrate in-

terface) components of electric field which after simplification

will have the following form:

d2Ez . dEz d2Ez
a. ~ ‘Jai dy

—+a2J%+bo —dy2

dEz
+ ,jbl ~+ b2Ez=0 (7a)

d2Ez dEz d2Ez
co@- ‘JC1 dg

—+c2fiz+do —dyl!

dEz
+ jdl —dv + d2Ez = 0, (7b)

where constants a. through dz are real functions of the

medium parameters, transform variable a, propagation con-

stant ,6, and ko, whose explicit forms are given in the AP-

pendix.

Finally, by performing successive substitutions to eliminate

Ez from (7a), it is possible to obtain a decoupled, fourth order

differential equation for E,

d4Ez d3Ez d2Ez dEz
‘o -@ —+W& = O, (8)‘Jw1~+w2~+Jw3 dy

where the coefficients W. to W4 are related to constants a. to

d2, as shown in the Appendix. A decoupled equation for EX

can also be derived by following the same approach used to

arrive at relation (8), and as a result, this procedure will not

be repeated here.

Since the substrate is assumed to be lossless, the transverse

(spectral-domain) propagation parameter, ~, is either purely

real or imaginary, with values of a ranging from negative to

positive infinity. Consequently, the solution to the characteris-

tic equation (8) inside the substrate will lead to standing waves

which mathematically are expressed in terms of sinusoidal

functions. The remaining components of E and H can be

expressed in terms of Ez and ~z by using Maxwell’s curl

equations (3) and (4). Finally, when the boundary conditions

are enforced at the air-metal-substrate interface, i.e., at y =: D,

the following dyadic Green’s function is obtained:

[

GZZ(CIJ?)G..(Wm
Gzz(a, /3) Gm.(a, /3)1[?[$=[%31‘9)

where its elements are given in the Appendix as well.

In order to examine the dispersion properties of single as

well as coupled microstrip transmission lines numerically, an

appropriate choice for the basis functions used to expand the

currents ~. and ~Z, which are flowing on the metal strips, is

made to ensure that they satisfy the required edge conditions.

Then a standard Galerkin method in the Fourier-domain is

applied along with Parserval’s theorem [7] to obtain a system

of matrix equations. The determinant of this system leads to

a secular equation whose roots correspond to the propagation

constant ~.

IV. NUMERICAL RIESULTS

In order to verify the formulation of the problem and its

numerical implementation, the effective dielectric constant

of both single and coupled microstriplines is calculated and

compared to previously published data [8]–[ 10]. The subsirate

materials used for validation include sapphire (zZZ = EZZ =

9.4 and SUu = 11.6) and boron nitride (E.. = Ezz = 5.1’2

and Svv = 3.4), with the numerical data generated for several
different combinations of physical line dimensions. As can be

seen from Figs. 2 and 3, a very good agreement for frequencies

ranging from 5 to 45 GHz is observed between results obtained

using the method presented in this paper and those reproduced

from [8] and [10].

Prior to examining effects of misalignment between coor-

dinates of the substrate and those of the single microstripline

structure, the influence of the magnetic anisotropy (in addition

to the dielectric anisotropy of the substrate) on (n. ~~)2 is

shown in Fig. 4. The change in the effective index of refraction

for a material characterized by a diagonal [s] tensor with

&ZZ = Ezz = 9.4 and Eyy = 11.6, is presented as a function of
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permeability (p~~, Kgv, or P z= ) for a coupled microstrip line.

individual elements of the permeability (PCZ, #yy, #~~ ) at 10

GHz. One element is allowed to vary at the time within the

range of 1 to 2. It is found that the dispersion characteristics

of a single microstrip are most sensitive to the variation of the

w~~ (or the ZZ) element of [p]. Notice, however, that in this
case the change in (n. ~~) 2 is quite profound and has a nearly

linear dependence over the entire range of p...

The same parameter study was also carried out for the

coupled microstripline, but this time, with a 30 degree mis-

alignment between (~, y, z) and (z’, y’, z’) coordinates. As

shown in Fig. 5, a similar dispersion pattern for the effective

index of refraction, to that of a single microstrip, can be

observed again. Once more, (n, ~~)2 increases almost lineally

with incremental changes in UZZ. Interestingly, this behavior

is seen for both the odd and even modes, with the exception

that the slopes of the dispersion curves are not the same for

the two cases.

Finally, the effects of coordinate misalignment for the two

structures are shown in Figs. 6 and 7. The effective index of

refraction and normalized guide wavelength are plotted versus

the misalignment angle @from O to 90 degrees (Fig. 6), whose
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Fig. 6. (n= ~~ )2 and normalized guide wavelength (A/&) as a function of
the misahgnm.nt angle for single microstrip line.

geometrical and medium parameters are shown in the figure.

Numerical results indicate that as % increases, (n, ~ ~ )2 de-

creases, while normalized guide wavelength becomes slightly

larger. The same behavior can be observed for the coupled

line as well, for both its odd and even modes (see Fig. 7).
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V. CONCLUSION

A differential matrix operator approach in conjunction with

the spectral-domain method was presented to study dispersion

characteristics of open single and coupled microstrip transmis-

sion lines. It was found that converting Maxwell’s equations

in the Fourier-transformed domain to a matrix form simplified

their manipulation in order to obtain differential equations

for the tangential components of the electric field, especially

when the substrate is anisotropic. Effects of both dielectric

and magnetic anisotropies were examined by changing the

misalignment angle between the axes of [e] and those of the

structure. The influence of the anisotropic permeability tensor,

in addition to the anisotropy in the permittivity, was observed

to be significant, particularly for changes in PZZ.

VI. APPENDIX

The coefficients of the coupled, second order differential

equations for EZ and EZ appearing in (7a) and (7b) are given

by

where Go = ~2/p~~ + a2/P~~ — k?Eyy.

When the coupled equation set (7a) and (7b) is decoupled to

obtain an independent fourth order differential equation which
~. satisfies. the new set of constants w. through WA in 03)

can be written as

W. = d~a~ – b~c~

WI = b~c~ – d~a~ + b~c~ – d~a~

W2 = d~a~ – b~c~ + b~c~ – d~a~

W3 = b~c~ – d~a~ + b~c~ – djal

W4 = b~c~ — d~a~

with

a~ = al – ao(azco – c2aO)/~0

a; = az

b~ = –ao(boco – doao)/DO

b~ = b. + ao(blco – dlao)/DO

b~ = bl – ao(b2co – d2ao)/D0

b; = b2

CL = CI – co(azco – c2ao)/D0

c; = C2

d~ = –CO(60C0 – doao)/Do

d~ = do+ co(bIco – dlao)/Do

d; = dl – co(bzco – d2ao)/Do

d: = dz,

and Do = ciao — alto.
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(A25)

(A26)

(A27)
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Finally, explicit expressions for the elements of the Green’s

function shown in equation (10) are listed below:

G.Z = j~~l UO/~1 + j~vo (A30)

G.z = j~~lU1/yl + javl (A31)

G.. = jcl~~Uo/yl -- j~vo (A32)

G.. = j(l~~U~/y~ – j@Vl (A33)

where yl = jOJ&o, ~1 = (a.2 + /32 – k~)l/2, and

U. = (~Q22 – CSQ12)/AQ (A34)

U1 = (czQ22+ 0Q12)/AQ (A35)

V. = (~Q1l – /3Q21)/AQ (A36)

VI = –(f3Q11 + ~Q21)/AQ (A37)

with AQ = Q11Q22– Q12C?21, and

QI1 = BAAGI + BBAG2 - j(c12 + 92) (A38)

Q12 = BABGI + BBBG’2 (A39)

Q21 = BAAG3 + BBAG4 (A40)

Q22 = BABG’3 + BBBG4 – j’yl(a2 + B2)/~1, (A.41)

where .zI . jw~o. The constants G1 through G4 are defined as

GI = ~HA – CSHE + ct.(~HB – CIHF) (A42)

G2 = ~HC – aHG + ct~(~HD – CYHH) (A43)

G3 = aHA + ,6H~ + Ct.(C~HB + ~HF) (A44)

Gd = aHc + fiHG + Ct&(CiHD + DHH) (A45)
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using the following shorthand notation eta = cot h(D~. ) and

ctb = coth(D~b), with

~~~ = j’y~ (/?~~ – ~)/[y~ (~b – -E.)] (A46)

BAB = ~(ciEb + ,8)/(E~ – E.) (A47)

B~A = –j~l (PE. – a)/[yI(E~ – E.)] (A48)

B~~ = –j(aEa + ~)/(Eb – Em). (A49)

The remaining constants appearing the above expressions are

given by

[1]

[2]

[3]

[4]

[5]

(A50)

(A51)

(A52)

(A53)

(A54)

(A55)

(A56)

(A57)

(A58)

(A59)

(A60)

(A61)

(A62)
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